62 research outputs found

    Electromagnetic Calorimeter for HADES

    Full text link
    We propose to build the Electromagnetic calorimeter for the HADES di-lepton spectrometer. It will enable to measure the data on neutral meson production from nucleus-nucleus collisions, which are essential for interpretation of dilepton data, but are unknown in the energy range of planned experiments (2-10 GeV per nucleon). The calorimeter will improve the electron-hadron separation, and will be used for detection of photons from strange resonances in elementary and HI reactions. Detailed description of the detector layout, the support structure, the electronic readout and its performance studied via Monte Carlo simulations and series of dedicated test experiments is presented. The device will cover the total area of about 8 m^2 at polar angles between 12 and 45 degrees with almost full azimuthal coverage. The photon and electron energy resolution achieved in test experiments amounts to 5-6%/sqrt(E[GeV]) which is sufficient for the eta meson reconstruction with S/B ratio of 0.4% in Ni+Ni collisions at 8 AGeV. A purity of the identified leptons after the hadron rejection, resulting from simulations based on the test measurements, is better than 80% at momenta above 500 MeV/c, where time-of-flight cannot be used.Comment: 40 pages, 38 figures version2 - the time schedule added, information about PMTs in Sec.III update

    Multichannel FPGA based MVT system for high precision time (20~ps~RMS) and charge measurement

    Full text link
    In this article it is presented an FPGA based MMulti-VVoltage TThreshold (MVT) system which allows of sampling fast signals (121-2 ns rising and falling edge) in both voltage and time domain. It is possible to achieve a precision of time measurement of 2020 ps RMS and reconstruct charge of signals, using a simple approach, with deviation from real value smaller than 10%\%. Utilization of the differential inputs of an FPGA chip as comparators together with an implementation of a TDC inside an FPGA allowed us to achieve a compact multi-channel system characterized by low power consumption and low production costs. This paper describes realization and functioning of the system comprising 192-channel TDC board and a four mezzanine cards which split incoming signals and discriminate them. The boards have been used to validate a newly developed Time-of-Flight Positron Emission Tomography system based on plastic scintillators. The achieved full system time resolution of σ\sigma(TOF) 68\approx 68 ps is by factor of two better with respect to the current TOF-PET systems.Comment: Accepted for publication in JINST, 10 pages, 8 figure

    Evaluation of Single-Chip, Real-Time Tomographic Data Processing on FPGA - SoC Devices

    Get PDF
    A novel approach to tomographic data processing has been developed and evaluated using the Jagiellonian PET (J-PET) scanner as an example. We propose a system in which there is no need for powerful, local to the scanner processing facility, capable to reconstruct images on the fly. Instead we introduce a Field Programmable Gate Array (FPGA) System-on-Chip (SoC) platform connected directly to data streams coming from the scanner, which can perform event building, filtering, coincidence search and Region-Of-Response (ROR) reconstruction by the programmable logic and visualization by the integrated processors. The platform significantly reduces data volume converting raw data to a list-mode representation, while generating visualization on the fly.Comment: IEEE Transactions on Medical Imaging, 17 May 201

    Study of dielectron production in C+C collisions at 1 AGeV

    Full text link
    The emission of e+e- pairs from C+C collisions at an incident energy of 1 GeV per nucleon has been investigated. The measured production probabilities, spanning from the pi0-Dalitz to the rho/omega! invariant-mass region, display a strong excess above the cocktail of standard hadronic sources. The bombarding-energy dependence of this excess is found to scale like pion production, rather than like eta production. The data are in good agreement with results obtained in the former DLS experiment.Comment: submitted to Physics Letters

    The High-Acceptance Dielectron Spectrometer HADES

    Get PDF
    HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85% azimuthal coverage over a polar angle interval from 18 to 85 degree, a single electron efficiency of 50% and a vector meson mass resolution of 2.5%. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range. This paper describes the main features and the performance of the detector system

    HADES experiment: di-lepton spectroscopy in p + p (2.2 GeV) and C+C (1 and 2 A GeV) collisions

    Get PDF
    The HADES (High Acceptance Di-Electron Spectrometer) is a tool designed for lepton pair (e+e−) spectroscopy in pion, proton and heavy ion induced reactions in the 1–2AGeV energy range. One of the goals of the HADES experiment is to study in-medium modifications of hadron properties like effective masses, decay widths, electromagnetic form factors etc. Such effects can be probed with vector mesons ( ρ,ω,ɸ ) decaying into e+e− channel. The identification of vector mesons by means of a HADES spectrometer is based on invariant mass reconstruction of e+e− pairs. The combined information from all spectrometer sub-detectors is used to reconstruct the di-lepton signal. The recent results from 2.2GeV p + p, 1AGeV and 2AGeV C+C experiments are presented.Diaz Medina, Jose, [email protected]
    corecore